Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 185 results
1.

Antidiabetic Close Loop Based on Wearable DNA-Hydrogel Glucometer and Implantable Optogenetic Cells.

red BphS HEK293 mouse in vivo Transgene expression
JACS Au, 6 Apr 2024 DOI: 10.1021/jacsau.4c00033 Link to full text
Abstract: Diabetes mellitus and its associated secondary complications have become a pressing global healthcare issue. The current integrated theranostic plan involves a glucometer-tandem pump. However, external condition-responsive insulin delivery systems utilizing rigid glucose sensors pose challenges in on-demand, long-term insulin administration. To overcome these challenges, we present a novel model of antidiabetic management based on printable metallo-nucleotide hydrogels and optogenetic engineering. The conductive hydrogels were self-assembled by bioorthogonal chemistry using oligonucleotides, carbon nanotubes, and glucose oxidase, enabling continuous glucose monitoring in a broad range (0.5-40 mM). The optogenetically engineered cells were enabled glucose regulation in type I diabetic mice via a far-red light-induced transgenic expression of insulin with a month-long avidity. Combining with a microchip-integrated microneedle patch, a prototyped close-loop system was constructed. The glucose levels detected by the sensor were received and converted by a wireless controller to modulate far-infrared light, thereby achieving on-demand insulin expression for several weeks. This study sheds new light on developing next-generation diagnostic and therapy systems for personalized and digitalized precision medicine.
2.

Engineering Material Properties of Transcription Factor Condensates to Control Gene Expression in Mammalian Cells and Mice.

blue CRY2/CIB1 CRY2/CRY2 CRY2olig HEK293T mouse in vivo U-2 OS Transgene expression Endogenous gene expression Organelle manipulation
Small, 4 Apr 2024 DOI: 10.1002/smll.202311834 Link to full text
Abstract: Phase separation of biomolecules into condensates is a key mechanism in the spatiotemporal organization of biochemical processes in cells. However, the impact of the material properties of biomolecular condensates on important processes, such as the control of gene expression, remains largely elusive. Here, the material properties of optogenetically induced transcription factor condensates are systematically tuned, and probed for their impact on the activation of target promoters. It is demonstrated that transcription factors in rather liquid condensates correlate with increased gene expression levels, whereas stiffer transcription factor condensates correlate with the opposite effect, reduced activation of gene expression. The broad nature of these findings is demonstrated in mammalian cells and mice, as well as by using different synthetic and natural transcription factors. These effects are observed for both transgenic and cell-endogenous promoters. The findings provide a novel materials-based layer in the control of gene expression, which opens novel opportunities in optogenetic engineering and synthetic biology.
3.

Light-directed evolution of dynamic, multi-state, and computational protein functionalities.

blue red EL222 PhyB/PIF3 S. cerevisiae Cell cycle control Transgene expression
bioRxiv, 2 Mar 2024 DOI: 10.1101/2024.02.28.582517 Link to full text
Abstract: Directed evolution is a powerful method in biological engineering. Current approaches were devised for evolving steady-state properties such as enzymatic activity or fluorescence intensity. A fundamental problem remains how to evolve dynamic, multi-state, or computational functionalities, e.g., folding times, on-off kinetics, state-specific activity, stimulus-responsiveness, or switching and logic capabilities. These require applying selection pressure on all of the states of a protein of interest (POI) and the transitions between them. We realized that optogenetics and cell cycle oscillations could be leveraged for a novel directed evolution paradigm (‘optovolution’) that is germane for this need: We designed a signaling cascade in budding yeast where optogenetic input switches the POI between off (0) and on (1) states. In turn, the POI controls a Cdk1 cyclin, which in the re-engineered cell cycle system is essential for one cell cycle stage but poisonous for another. Thus, the cyclin must oscillate (1-0-1-0…) for cell proliferation. In this system, evolution can act efficiently on the dynamics, transient states, and input-output relations of the POI in every cell cycle. Further, controlling the pacemaker, light, directs and tunes selection pressures. Optovolution is in vivo, continuous, self-selecting, and genetically robust. We first evolved two optogenetic systems, which relay 0/1 input to 0/1 output: We obtained 25 new variants of the widely used LOV transcription factor El222. These mutants were stronger, less leaky, or green- and red-responsive. The latter was conjectured to be impossible for LOV domains but is needed for multiplexing and lowering phototoxicity. Evolving the PhyB-Pif3 optogenetic system, we discovered that loss of YOR1 makes supplementing the expensive and unstable chromophore phycocyanobilin (PCB) unnecessary. Finally, we demonstrate the generality of the method by creating and evolving a destabilized rtTA transcription factor, which performs an AND operation between transcriptional and doxycycline input. Optovolution makes coveted, difficult-to-change protein functionalities evolvable.
4.

Light-Guided Rabies Virus Tracing for Neural Circuit Analysis.

red PhyB/PIF3 rat cortical neurons Transgene expression
bioRxiv, 23 Feb 2024 DOI: 10.1101/2023.03.04.531104 Link to full text
Abstract: Neuronal tracing methods are essential tools to understand the fundamental architecture of neural circuits and their connection to the overall functional behavior of the brain. Viral vectors used to map these transsynaptic connections are capable of cell-type-specific and directional-specific labeling of the neuronal connections. Herein, we describe a novel approach to guide the transsynaptic spreading of the Rabies Virus (RV) retrograde tracer using light. We built a Baculovirus (BV) as a helper virus to deliver all the functional components necessary and sufficient for a nontoxic RV to spread from neuron to neuron, with a light-actuated gene switch to control the RV polymerase, the L gene. This design should allow for precisely controlled polysynaptic viral tracing with minimal viral toxicity. To use this system in a highly scalable and automated manner, we built optoelectronics for controlling this system in vitro with a large field of view using an off-the-shelf CMOS sensor, OLED display panel, and microcontrollers. We describe the assembly of these genetic circuits using the uLoop DNA assembly method and a library of genetic parts designed for the uLoop system. Combining these tools provides a framework for increasing the capabilities of nontoxic tracing through multiple synapses and increasing the throughput of neural tracing using viruses.
5.

Enhancing high-throughput optogenetics: Integration of LITOS with Lustro enables simultaneous light stimulation and shaking.

blue CRY2/CIB1 S. cerevisiae Transgene expression
MicroPubl Biol, 2 Feb 2024 DOI: 10.17912/micropub.biology.001073 Link to full text
Abstract: Optogenetics is a powerful tool that uses light to control cellular behavior. Here we enhance high-throughput characterization of optogenetic experiments through the integration of the LED Illumination Tool for Optogenetic Stimulation (LITOS) with the previously published automated platform Lustro. Lustro enables efficient high-throughput screening and characterization of optogenetic systems. The initial iteration of Lustro used the optoPlate illumination device for light induction, with the robot periodically moving the plate over to a shaking device to resuspend cell cultures. Here, we designed a 3D-printed adaptor, rendering LITOS compatible with the BioShake 3000-T ELM used in Lustro. This novel setup allows for concurrent light stimulation and culture agitation, streamlining experiments. Our study demonstrates comparable growth rates between constant and intermittent shaking of Saccharomyces cerevisiae liquid cultures. While the light intensity of the LITOS is not as bright as the optoPlate used in the previous iteration of Lustro, the constant shaking increased the maturation rate of the mScarlet-I fluorescent reporter used. Only a marginal increase in temperature was observed when using the modified LITOS equipped with the 3D-printed adaptor. Our findings show that the integration of LITOS onto a plate shaker allows for constant culture shaking and illumination compatible with laboratory automation platforms, such as Lustro.
6.

Epstein-Barr Virus Promotes Tumorigenicity and Worsens Hodgkin Lymphoma Prognosis by Activating JAK/STAT and NF-κB Signaling Pathways.

blue red DmBphP PAL E. coli Transgene expression Multichromatic
Iran J Med Sci, 1 Feb 2024 DOI: 10.21203/rs.3.rs-3902447/v1 Link to full text
Abstract: Epstein-Barr virus (EBV) is detected in 40% of patients with Hodgkin lymphoma (HL). During latency, EBV induces epigenetic alterations to the host genome and decreases the expression of pro-apoptotic proteins. The present study aimed to evaluate the expression levels of mRNA molecules and the end product of proteins for the JAK/STAT and NF-κB pathways, and their association with clinicopathological and prognostic parameters in patients with EBV-positive and -negative classical Hodgkin lymphoma (CHL).
7.

Spatiotemporally controlled Pseudomonas exotoxin transgene system combined with multifunctional nanoparticles for breast cancer antimetastatic therapy.

blue VVD 4T1 HCT116 HUVEC mouse in vivo NCTC clone 929 Transgene expression
J Control Release, 25 Jan 2024 DOI: 10.1016/j.jconrel.2023.08.011 Link to full text
Abstract: The tumor microenvironment is a barrier to breast cancer therapy. Cancer-associated fibroblast cells (CAFs) can support tumor proliferation, metastasis, and drug resistance by secreting various cytokines and growth factors. Abnormal angiogenesis provides sufficient nutrients for tumor proliferation. Considering that CAFs express the sigma receptor (which recognizes anisamide, AA), we developed a CAFs and breast cancer cells dual-targeting nano drug delivery system to transport the LightOn gene express system, a spatiotemporal controlled gene expression consisting of a light-sensitive transcription factor and a specific minimal promoter. We adopted RGD (Arg-Gly-Asp) to selectively bind to the αvβ3 integrin on activated vascular endothelial cells and tumor cells. After the LightOn system has reached the tumor site, LightOn gene express system can spatiotemporal controllably express toxic Pseudomonas exotoxin An under blue light irradiation. The LightOn gene express system, combined with multifunctional nanoparticles, achieved high targeting delivery efficiency both in vitro and in vivo. It also displayed strong tumor and CAFs inhibition, anti-angiogenesis ability and anti-metastasis ability, with good safety. Moreover, it improved survival rate, survival time, and lung metastasis rate in a mouse breast cancer model. This study proves the efficacy of combining the LightOn system with targeted multifunctional nanoparticles in tumor and anti-metastatic therapy and provides new insights into tumor microenvironment regulation.
8.

An RNA Motif That Enables Optozyme Control and Light-Dependent Gene Expression in Bacteria and Mammalian Cells.

blue PAL E. coli HEK293T Transgene expression
Adv Sci (Weinh), 16 Jan 2024 DOI: 10.1002/advs.202304519 Link to full text
Abstract: The regulation of gene expression by light enables the versatile, spatiotemporal manipulation of biological function in bacterial and mammalian cells. Optoribogenetics extends this principle by molecular RNA devices acting on the RNA level whose functions are controlled by the photoinduced interaction of a light-oxygen-voltage photoreceptor with cognate RNA aptamers. Here light-responsive ribozymes, denoted optozymes, which undergo light-dependent self-cleavage and thereby control gene expression are described. This approach transcends existing aptamer-ribozyme chimera strategies that predominantly rely on aptamers binding to small molecules. The optozyme method thus stands to enable the graded, non-invasive, and spatiotemporally resolved control of gene expression. Optozymes are found efficient in bacteria and mammalian cells and usher in hitherto inaccessible optoribogenetic modalities with broad applicability in synthetic and systems biology.
9.

Development of an optogenetic gene expression system in Lactococcus lactis using a split photoactivatable T7 RNA polymerase.

blue Magnets L. lactis Transgene expression
bioRxiv, 6 Jan 2024 DOI: 10.1101/2024.01.05.574370 Link to full text
Abstract: Cellular processes can be modulated by physical means, such as light, which offers advantages over chemically inducible systems with respect to spatiotemporal control. Here we introduce an optogenetic gene expression system for Lactococcus lactis that utilizes a split T7 RNA polymerase linked to two variants of the Vivid regulators. Depending on the chosen photoreceptor variant, either ‘Magnets’ or ‘enhanced Magnets’, this system can achieve either high protein expression levels or low basal activity in the absence of light, exhibiting a fold induction close to 30, rapid expression kinetics, and heightened light sensitivity. This system functions effectively in liquid cultures and within cells embedded in hydrogel matrices, highlighting its potential in the development of novel engineered living materials capable of responding to physical stimuli such as light. The optogenetic component of this system is highly customizable, allowing for the adjustment of expression patterns through modifications to the promoters and/or engineered T7 RNA polymerase variants. We anticipate that this system can be broadly adapted to other Gram-positive hosts with minimal modifications required.
10.

Light inducible protein degradation in E. coli with the LOVdeg tag.

blue AsLOV2 EL222 E. coli Transgene expression
Elife, 3 Jan 2024 DOI: 10.7554/elife.87303.2 Link to full text
Abstract: Molecular tools for optogenetic control allow for spatial and temporal regulation of cell behavior. In particular, light controlled protein degradation is a valuable mechanism of regulation because it can be highly modular, used in tandem with other control mechanisms, and maintain functionality throughout growth phases. Here, we engineered LOVdeg, a tag that can be appended to a protein of interest for inducible degradation in Escherichia coli using blue light. We demonstrate the modularity of LOVdeg by using it to tag a range of proteins, including the LacI repressor, CRISPRa activator, and the AcrB efflux pump. Additionally, we demonstrate the utility of pairing the LOVdeg tag with existing optogenetic tools to enhance performance by developing a combined EL222 and LOVdeg system. Finally, we use the LOVdeg tag in a metabolic engineering application to demonstrate post-translational control of metabolism. Together, our results highlight the modularity and functionality of the LOVdeg tag system, and introduce a powerful new tool for bacterial optogenetics.
11.

Multicolor optogenetics for regulating flux ratio of three glycolytic pathways using EL222 and CcaSR in Escherichia coli.

blue green CcaS/CcaR EL222 E. coli Transgene expression Multichromatic
Biotechnol Bioeng, 20 Dec 2023 DOI: 10.1002/bit.28628 Link to full text
Abstract: Optogenetics is an attractive synthetic biology tool for controlling the metabolic flux distribution. Here, we demonstrated optogenetic flux ratio control of glycolytic pathways consisting of the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways by illuminating multicolor lights using blue light-responsive EL222 and green/red light-responsive CcaSR in Escherichia coli. EL222 forms a dimer and binds to a particular DNA sequence under blue light; therefore, target gene expression can be reduced or induced by inserting a recognition sequence into its promoter regions. First, a flux ratio between the PP and ED pathways was controlled by blue light using EL222. After blocking the EMP pathway, the EL222-recognition sequence was inserted between the -35 and -10 regions of gnd to repress the PP flux and was also inserted upstream of the -35 region of edd to induce ED flux. After adjusting light intensity, the PP:ED flux ratios were 60:39% and 29:70% under dark and blue light conditions, respectively. Finally, a CcaSR-based pgi expression system was implemented to control the flux ratio between the EMP and PP + ED pathways by illuminating green/red light. The EMP:PP:ED flux ratios were 80:9:11%, 14:35:51%, and 33:5:62% under green, red, and red and blue light, respectively.
12.

Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro.

blue CRY2/CIB1 EL222 Magnets S. cerevisiae Transgene expression
bioRxiv, 20 Dec 2023 DOI: 10.1101/2023.12.19.572411 Link to full text
Abstract: The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation, we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive spit transcription factors in the budding yeast, Saccharomyces cerevisiae. We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.
13.

Living Materials Based Dynamic Information Encryption via Light-Inducible Bacterial Biosynthesis of Quantum Dots.

blue RsLOV E. coli Transgene expression
Angew Chem Int Ed Engl, 12 Dec 2023 DOI: 10.1002/anie.202315251 Link to full text
Abstract: Microbial biosynthesis, as an alternative method for producing quantum dots (QDs), has gained attention because it can be conducted under mild and environmentally friendly conditions, distinguishing it from conventional chemical and physical synthesis approaches. However, there is currently no method to selectively control this biosynthesis process in a subset of microbes within a population using external stimuli. In this study, we have attained precise and selective control over the microbial biosynthesis of QDs through the utilization of an optogenetically engineered Escherichia coli (E. coli). The recombinant E. coli is designed to express smCSE enzyme, under the regulation of eLightOn system, which can be activated by blue light. The smCSE enzymes use L-cysteine and Cd2+ as substrates to form CdS QDs. This system enables light-inducible bacterial biosynthesis of QDs in precise patterns within a hydrogel for information encryption. As the biosynthesis progresses, the optical characteristics of the QDs change, allowing living materials containing the recombinant E. coli to display time-dependent patterns that self-destruct after reading. Compared to static encryption using fluorescent QD inks, dynamic information encryption based on living materials offers enhanced security.
14.

A red light-induced genetic system for control of extracellular electron transfer.

blue red iLight YtvA E. coli Transgene expression Multichromatic
bioRxiv, 2 Dec 2023 DOI: 10.1101/2023.12.02.569691 Link to full text
Abstract: Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported into new host strains. Here, we developed and adapted a red light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. Promoter engineering and a thermodynamic model were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer (EET) within S. oneidensis. The ability to use both red and blue light-induced optogenetic circuits simultaneously was demonstrated. Our work expands the synthetic biology toolbox of Shewanella, which could facilitate future advances in applications with electrogenic bacteria.
15.

High-throughput feedback-enabled optogenetic stimulation and spectroscopy in microwell plates.

blue YtvA E. coli Transgene expression
Commun Biol, 24 Nov 2023 DOI: 10.1038/s42003-023-05532-4 Link to full text
Abstract: The ability to perform sophisticated, high-throughput optogenetic experiments has been greatly enhanced by recent open-source illumination devices that allow independent programming of light patterns in single wells of microwell plates. However, there is currently a lack of instrumentation to monitor such experiments in real time, necessitating repeated transfers of the samples to stand-alone analytical instruments, thus limiting the types of experiments that could be performed. Here we address this gap with the development of the optoPlateReader (oPR), an open-source, solid-state, compact device that allows automated optogenetic stimulation and spectroscopy in each well of a 96-well plate. The oPR integrates an optoPlate illumination module with a module called the optoReader, an array of 96 photodiodes and LEDs that allows 96 parallel light measurements. The oPR was optimized for stimulation with blue light and for measurements of optical density and fluorescence. After calibration of all device components, we used the oPR to measure growth and to induce and measure fluorescent protein expression in E. coli. We further demonstrated how the optical read/write capabilities of the oPR permit computer-in-the-loop feedback control, where the current state of the sample can be used to adjust the optical stimulation parameters of the sample according to pre-defined feedback algorithms. The oPR will thus help realize an untapped potential for optogenetic experiments by enabling automated reading, writing, and feedback in microwell plates through open-source hardware that is accessible, customizable, and inexpensive.
16.

A single-component, light-assisted uncaging switch for endoproteolytic release.

blue violet CRY2/CIB1 iLID PhoCl HEK293T primary rat hippocampal neurons Signaling cascade control Transgene expression
Nat Chem Biol, 16 Nov 2023 DOI: 10.1038/s41589-023-01480-6 Link to full text
Abstract: Proteases function as pivotal molecular switches, initiating numerous biological events. Notably, potyviral protease, derived from plant viruses, has emerged as a trusted proteolytic switch in synthetic biological circuits. To harness their capabilities, we have developed a single-component photocleavable switch, termed LAUNCHER (Light-Assisted UNcaging switCH for Endoproteolytic Release), by employing a circularly permutated tobacco etch virus protease and a blue-light-gated substrate, which are connected by fine-tuned intermodular linkers. As a single-component system, LAUNCHER exhibits a superior signal-to-noise ratio compared with multi-component systems, enabling precise and user-controllable release of payloads. This characteristic renders LAUNCHER highly suitable for diverse cellular applications, including transgene expression, tailored subcellular translocation and optochemogenetics. Additionally, the plug-and-play integration of LAUNCHER into existing synthetic circuits facilitates the enhancement of circuit performance. The demonstrated efficacy of LAUNCHER in improving existing circuitry underscores its significant potential for expanding its utilization in various applications.
17.

Light induced expression of gRNA allows for optogenetic gene editing of T lymphocytes in vivo.

blue EL222 HEK293FT HEK293T mouse in vivo mouse T cells Transgene expression Endogenous gene expression Nucleic acid editing
bioRxiv, 10 Nov 2023 DOI: 10.1101/2023.11.09.566272 Link to full text
Abstract: There is currently a lack of tools capable of perturbing genes in both a precise and spatiotemporal fashion. CRISPR’s ease of use and flexibility, coupled with light’s unparalleled spatiotemporal resolution deliverable from a controllable source, makes optogenetic CRISPR a well-suited solution for precise spatiotemporal gene perturbations. Here we present a new optogenetic CRISPR tool, BLU-VIPR, that diverges from prevailing split-Cas design strategies and instead focuses on optogenetic regulation of gRNA production. This simplifies spatiotemporal gene perturbation and works in vivo with cells previously intractable to optogenetic gene editing. We engineered BLU-VIPR around a new potent blue-light activated transcription factor and ribozyme-flanked gRNA. The BLU-VIPR design is genetically encoded and ensures precise excision of multiple gRNAs from a single mRNA transcript, allowing for optogenetic gene editing in T lymphocytes in vivo.
18.

Toward a modeling, optimization, and predictive control framework for fed-batch metabolic cybergenetics.

green CcaS/CcaR E. coli Transgene expression
Biotechnol Bioeng, 9 Nov 2023 DOI: 10.1002/bit.28575 Link to full text
Abstract: Biotechnology offers many opportunities for the sustainable manufacturing of valuable products. The toolbox to optimize bioprocesses includes extracellular process elements such as the bioreactor design and mode of operation, medium formulation, culture conditions, feeding rates, and so on. However, these elements are frequently insufficient for achieving optimal process performance or precise product composition. One can use metabolic and genetic engineering methods for optimization at the intracellular level. Nevertheless, those are often of static nature, failing when applied to dynamic processes or if disturbances occur. Furthermore, many bioprocesses are optimized empirically and implemented with little-to-no feedback control to counteract disturbances. The concept of cybergenetics has opened new possibilities to optimize bioprocesses by enabling online modulation of the gene expression of metabolism-relevant proteins via external inputs (e.g., light intensity in optogenetics). Here, we fuse cybergenetics with model-based optimization and predictive control for optimizing dynamic bioprocesses. To do so, we propose to use dynamic constraint-based models that integrate the dynamics of metabolic reactions, resource allocation, and inducible gene expression. We formulate a model-based optimal control problem to find the optimal process inputs. Furthermore, we propose using model predictive control to address uncertainties via online feedback. We focus on fed-batch processes, where the substrate feeding rate is an additional optimization variable. As a simulation example, we show the optogenetic control of the ATPase enzyme complex for dynamic modulation of enforced ATP wasting to adjust product yield and productivity.
19.

Near-Infrared Optogenetic Module for Conditional Protein Splicing.

red DrBphP MagRed HEK293T HeLa Transgene expression Cell death
J Mol Biol, 8 Nov 2023 DOI: 10.1016/j.jmb.2023.168360 Link to full text
Abstract: Optogenetics has emerged as a powerful tool for spatiotemporal control of biological processes. Near-infrared (NIR) light, with its low phototoxicity and deep tissue penetration, holds particular promise. However, the optogenetic control of polypeptide bond formation has not yet been developed. In this study, we introduce a NIR optogenetic module for conditional protein splicing (CPS) based on the gp41-1 intein. We optimized the module to minimize background signals in the darkness and to maximize the contrast between light and dark conditions. Next, we engineered a NIR CPS gene expression system based on the protein ligation of a transcription factor. We applied the NIR CPS for light-triggered protein cleavage to activate gasdermin D, a pore-forming protein that induces pyroptotic cell death. Our NIR CPS optogenetic module represents a promising tool for controlling molecular processes through covalent protein linkage and cleavage.
20.

Full-field exposure of larval zebrafish to narrow waveband LED light sources at defined power and energy for optogenetic applications.

blue VVD zebrafish in vivo Transgene expression
J Neurosci Methods, 31 Oct 2023 DOI: 10.1016/j.jneumeth.2023.110001 Link to full text
Abstract: Optogenetic approaches in transparent zebrafish models have provided numerous insights into vertebrate neurobiology. The purpose of this study was to develop methods to activate light-sensitive transgene products simultaneously throughout an entire larval zebrafish.
21.

Light-driven synchronization of optogenetic clocks.

green CcaS/CcaR E. coli Cell cycle control Transgene expression
bioRxiv, 24 Oct 2023 DOI: 10.1101/2023.10.24.563722 Link to full text
Abstract: Synthetic genetic oscillators can serve as internal clocks within engineered cells to program periodic expression. However, cell-to-cell variability introduces a dispersion in the characteristics of these clocks that drives the population to complete desynchronization. Here we introduce the optorepressilator, an optically controllable genetic clock that combines the repressilator, a three-node synthetic network in E. coli, with an optogenetic module enabling to reset, delay, or advance its phase using optical inputs. We demonstrate that a population of optorepressilators can be synchronized by transient green light exposure or entrained to oscillate indefinitely by a train of short pulses, through a mechanism reminiscent of natural circadian clocks. Furthermore, we investigate the system’s response to detuned external stimuli observing multiple regimes of global synchronization. Integrating experiments and mathematical modeling, we show that the entrainment mechanism is robust and can be understood quantitatively from single cell to population level.
22.

Comprehensive Screening of a Light-Inducible Split Cre Recombinase with Domain Insertion Profiling.

blue Magnets E. coli Transgene expression
ACS Synth Biol, 3 Oct 2023 DOI: 10.1021/acssynbio.3c00328 Link to full text
Abstract: Splitting proteins with light- or chemically inducible dimers provides a mechanism for post-translational control of protein function. However, current methods for engineering stimulus-responsive split proteins often require significant protein engineering expertise and the laborious screening of individual constructs. To address this challenge, we use a pooled library approach that enables rapid generation and screening of nearly all possible split protein constructs in parallel, where results can be read out by using sequencing. We perform our method on Cre recombinase with optogenetic dimers as a proof of concept, resulting in comprehensive data on the split sites throughout the protein. To improve the accuracy in predicting split protein behavior, we develop a Bayesian computational approach to contextualize errors inherent to experimental procedures. Overall, our method provides a streamlined approach for achieving inducible post-translational control of a protein of interest.
23.

Highlighter: An optogenetic system for high-resolution gene expression control in plants.

green CcaS/CcaR E. coli Transgene expression
PLoS Biol, 21 Sep 2023 DOI: 10.1371/journal.pbio.3002303 Link to full text
Abstract: Optogenetic actuators have revolutionized the resolution at which biological processes can be controlled. In plants, deployment of optogenetics is challenging due to the need for these light-responsive systems to function in the context of horticultural light environments. Furthermore, many available optogenetic actuators are based on plant photoreceptors that might crosstalk with endogenous signaling processes, while others depend on exogenously supplied cofactors. To overcome such challenges, we have developed Highlighter, a synthetic, light-gated gene expression system tailored for in planta function. Highlighter is based on the photoswitchable CcaS-CcaR system from cyanobacteria and is repurposed for plants as a fully genetically encoded system. Analysis of a re-engineered CcaS in Escherichia coli demonstrated green/red photoswitching with phytochromobilin, a chromophore endogenous to plants, but also revealed a blue light response likely derived from a flavin-binding LOV-like domain. We deployed Highlighter in transiently transformed Nicotiana benthamiana for optogenetic control of fluorescent protein expression. Using light to guide differential fluorescent protein expression in nuclei of neighboring cells, we demonstrate unprecedented spatiotemporal control of target gene expression. We implemented the system to demonstrate optogenetic control over plant immunity and pigment production through modulation of the spectral composition of broadband visible (white) light. Highlighter is a step forward for optogenetics in plants and a technology for high-resolution gene induction that will advance fundamental plant biology and provide new opportunities for crop improvement.
24.

Photoactivatable base editors for spatiotemporally controlled genome editing in vivo.

blue AsLOV2 CRY2/CIB1 Magnets HEK293T mouse in vivo Transgene expression Nucleic acid editing
Biomaterials, 13 Sep 2023 DOI: 10.1016/j.biomaterials.2023.122328 Link to full text
Abstract: CRISPR-based base editors (BEs) are powerful tools for precise nucleotide substitution in a wide range of organisms, but spatiotemporal control of base editing remains a daunting challenge. Herein, we develop a photoactivatable base editor (Mag-ABE) for spatiotemporally controlled genome editing in vivo for the first time. The base editing activity of Mag-ABE can be activated by blue light for spatiotemporal regulation of both EGFP reporter gene and various endogenous genes editing. Meanwhile, the Mag-ABE prefers to edit A4 and A5 positions rather than to edit A6 position, showing the potential to decrease bystander editing of traditional adenine base editors. After integration with upconversion nanoparticles as a light transducer, the Mag-ABE is further applied for near-infrared (NIR) light-activated base editing of liver in transgenic reporter mice successfully. This study opens a promising way to improve the operability, safety, and precision of base editing.
25.

Diya – a universal light illumination platform for multiwell plate cultures.

blue green CcaS/CcaR CRY2/CIB1 EL222 Magnets VVD E. coli HEK293T HeLa S. cerevisiae Transgene expression
iScience, 9 Sep 2023 DOI: 10.1016/j.isci.2023.107862 Link to full text
Abstract: Recent progress in protein engineering has established optogenetics as one of the leading external non-invasive stimulation strategies, with many optogenetic tools being designed for in vivo operation. Characterization and optimization of these tools require a high-throughput and versatile light delivery system targeting micro-titer culture volumes. Here, we present a universal light illumination platform – Diya, compatible with a wide range of cell culture plates and dishes. Diya hosts specially-designed features ensuring active thermal management, homogeneous illumination, and minimal light bleedthrough. It offers light induction programming via a user-friendly custom-designed GUI. Through extensive characterization experiments with multiple optogenetic tools in diverse model organisms (bacteria, yeast and human cell lines), we show that Diya maintains viable conditions for cell cultures undergoing light induction. Finally, we demonstrate an optogenetic strategy for in vivo biomolecular controller operation. With a custom-designed antithetic integral feedback circuit, we exhibit robust perfect adaptation and light-controlled set-point variation using Diya.
Submit a new publication to our database